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Abstract
In vector space models, the meanings of concepts or words are represented as points
in high-dimensional vector spaces, also referred to as semantic spaces. These spaces
are usually derived automatically from large collections of texts, directly exploiting
the sets of contexts in which individual words appear and considering these contexts
to be the key constituents of semantic meaning.

The weakness of existing models is that they completely rely on linguistic input,
although there is a growing body of evidence that other modalities also contribute
to forming semantic representations. This has led to attempts to enrich existing
semantic spaces with perceptual information. However, there are two problems that
need to be addressed: (1) How to incorporate perceptual information into existing
vector spaces? (2) How to acquire this type of data?

In this work, we focus mostly on the latter problem and present a framework
for extraction of concept representations from images. The procedure starts with a
collection of images that are all tagged with a given concept. Each image is repre-
sented by a set of features called visual words. These features constitute the visual
context of the given concept similarly to the linguistic context used in textual mod-
els. In this way, we arrive at having two sets of contexts for each concept: a set of
linguitic contexts derived from text corpora and a set of visual contexts extracted
from images. These two sources of information are then used to create two distinct
conceptual representations, textual and visual, which can be combined to create a
final representation of the given concept.

Key words: distributional semantics, lexical semantics, semantic memory, con-
cept representation
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Chapter 1

Introduction

1.1 What is a concept and why is it important?

Every day, we encounter, interact with or talk about an uncountable number of
objects. We can recognize and name the objects upon seeing or hearing, we know
how to use them, we can group them together based on their similarity. Consider
for example the way we think about dogs. There are dogs of numerous shapes and
colours and sizes, but we regard all of them as belonging to a single class of objects.
When you read a story about a dog that you have not seen before, you can draw
some inferences about its behaviour and other characteristics using your mental rep-
resentation of the dog as a species. This mental representation of a set of objects is
called a concept. As such, concepts are fundamental components of human cognition
and play an important role in learning, verbal communication, object recognition and
many other areas (Kiefer and Pulvermüller, 2012).

For a long time, the study of concepts had been the domain of philosophy. Nowa-
days, however, concepts have already found their way into many other disciplines and
are analyzed from many other points of view. Cognitive scientists and psychologists
investigate how concepts are represented in mind and brain and how this representa-
tion affects our action. Researchers in lexical semantics, a subfield of linguistics that
studies the meaning of words and its contribution to the meaning of complex expres-
sions, consider concepts to be major constituents of word meaning (Meteyard et al.,
2012). In addition to that, concepts and their representations also play an important
role in artificial intelligence where making computers understand human concepts
and language would represent a major step forward. It could change the very nature
of human-computer interaction, expand the range of applications for computers in
everyday life and bring important contributions to fields such as robotics.

In humans, knowledge about concepts and the basic processes that act upon them
is the domain of semantic memory (Binder and Desai, 2011; McRae and Jones,
2012). Although it is generally accepted that we learn concepts through our con-
tinuous perceptual experience of the world, there is no agreement among cognitive

1
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scientists and neuroscientists about the actual nature of conceptual representations
(Mahon and Caramazza, 2009). Semantic memory used to be regarded as a long-
term amodal storage system and the concepts represented there were believed to
be detached from the sensory-motor brain systems (Kiefer and Pulvermüller, 2012).
However, this view is nowadays being contested and the evidence that conceptual
representations are grounded in perceptual experience is growing (Barsalou, 2008).
This has been accompanied by a shift from localist to distributed approaches to rep-
resentations, in which a concept is believed to be encoded by an activation pattern
over a set of representational units (McRae and Jones, 2012). These are better suited
to encode thousands of different categories of objects and actions that humans are
capable of recognizing.

1.2 Semantic Spaces

In parallel to the advances in cognitive science and neuroscience, several ap-
proaches to representing certain aspects of concepts have been developed in other
fields. Vector space models, which have proved to be successful in many appli-
cations, represent the meanings of concepts or words as points in high-dimensional
arithmetic vector spaces, also referred to as semantic spaces. There are at least
two good reasons to use vector spaces. First, individual vector components can stand
for specific features (such as size, animacy or context), which is a natural way how
to characterize a concept. Second, the notion of “distance” or “similarity” between
concepts reduces to the distance between representation vectors in the vector space.
These implementation details are always specified by the particular model in use.

In an early attempt to measure meaning using semantic spaces, Osgood et al.
(1957) defined each dimension by a pair of adjectives that were opposite in meaning,
e.g. happy–sad, hard–soft or tall–short. Subjects were then asked to judge concepts
against a series of such scales, and by averaging the scores across subjects the au-
thors arrived at conceptual representations which were then used to describe various
psychological phenomena.

Models of word meaning developed by computational linguists or computer scien-
tists usually make use of large collections of texts to derive word representations in
an automatic fashion. There are two main methods to do so. The first one directly
exploits the sets of contexts in which the words appear and considers them to be
the key constituents of semantic meaning. The dimensions of such semantic spaces
stand for individual context items – for example documents or co-occurring words.
In this way, the words apple, fruit and pear will end up having similar representation
vectors because they usually appear in similar contexts – in texts about fruits, food,
gardening etc. On the other hand, the word petroleum generally appears in different
contexts and its representation will therefore differ from those of apple, fruit and pear.
This approach is known as the distributional method. A theoretical justification
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for this approach is the so-called distributional hypothesis, which states that “words
that occur in similar contexts tend to have similar meanings” (Turney and Pantel,
2010, p. 143). This idea is central to our work and will be discussed in detail later in
the text.

The second method is based on artificial neural networks and produces vector
representations of words as a by-product of language modelling1. The meaning of
resulting dimensions are not, however, easy to interpret and we will not discuss this
method further.

1.3 Grounding Semantic Spaces in Perception

The weakness of existing semantic representation models is that they rely com-
pletely on linguistic input, although – as we mentioned earlier – there is a growing
body of evidence that other modalities also contribute to forming semantic represen-
tations. This has led to attempts to enrich existing semantic spaces with perceptual
information. The problem is, however, twofold: how to incorporate perceptual in-
formation and, even more importantly, how to acquire this type of data in the first
place.

One possibility is to use feature production norms, which are lists of features
that human subjects consider important or defining for given concepts. The type
of information provided by feature norms is illustrated in Figure 1.1, which includes
a subset of features produced for the alligator and ambulance concepts in McRae
et al. (2005). Some researchers use such representations as a proxy for sensory-
motor experience (Silberer and Lapata, 2012) and combine them with representations
extracted from linguistic data to create multimodal semantic spaces.

Nevertheless, we think that feature norms are not sufficient. Although they can
give us some initial insights into the workings of grounded models, they cannot be
employed for large-scale projects due to their being too labour-instensive to produce;
currently available feature norms have been collected only for a limited number of
concepts. It is therefore important to explore other approaches that would give us
the possibility to produce representations for large numbers of concepts. Following
the work by Bruni et al. (2012a), we would like to present a framework that creates
visual semantic spaces from thousands of images tagged with appropriate concepts.
As the visual system is an important source of information about the surrounding
environment, visual models could significantly help in grounding current semantic
spaces in perception. Moreover, computer vision methods have undergone such a
development in recent years, especially in the fields of image representation and object
recognition, that renders this undertaking possible.

1A language model is a function that assigns a probability P (w1, ..., wn) to a sequence w1w2...wn

of n words.
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Alligator:

• has a mouth

• has a tail

• has jaws

• is green

• is long

Ambulance:

• has 4 wheels

• is fast

• is large

• is loud

• is white

Figure 1.1: An example of features produced by human subjects (McRae et al., 2005).
In a typical feature norm set, each concept-feature pair is assigned a numerical value
that represents the number of subjects that included this feature.

The proposed procedure is as follows. The model starts with a collection of images
that are all tagged with a given concept. Each image can be represented by a set
of features called visual words. These words constitute the visual context for the
given concept similarly to the linguistic context discussed in the previous section.
In this way, we arrive at having two sets of contexts for each concept: a set of
linguitic contexts derived from text corpora and a set of visual contexts extracted
from images. These two sources of information are then used to create two distinct
conceptual representations, textual and visual, which can be combined to create a
final representation of the given concept.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows. In the first part of Chapter 2
we give a detailed literature overview of semantic representation models derived from
text corpora. These models are usually relatively simple to implement and intro-
duced many ideas and techniques employed in later chapters. In the second part of
the chapter, we discuss existing attempts at grounding conceptual representations in
perception.

Chapter 3 gives an overview of computer vision techniques and presents the Vi-
sual Semantics toolkit (VSEM). This toolkit implements the whole image semantic
representation pipeline and contains several benchmarks that can be used to test the
quality of resulting semantic spaces.

In Chapter 4 we evaluate the performance of visual semantic spaces in modelling
human semantic relatedness scores based on several parameters, including the number
of visual words.
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The VSEM toolkit constitutes just a first step in exploring the possibilities of
semantic representation with visual and other multimodal information. In Chapter 5,
we give a brief overview of current research problems and possible future applications,
such as brain activity predictions and creation of supramodal representations using
auto-encoders.

Finally, Chapter 6 provides a summary of the topics and problems covered in the
thesis.



Chapter 2

Background

2.1 Distributional Method

The distributional method has its roots in linguistic theory. Zellig Harris proposed
the distributional hypothesis according to which the meaning of words is at least in
part derived form the contexts in which they appear:

If [two words] A and B have almost identical environments except chiefly
for sentences which contain both, we say they are synonyms: oculist and
eye doctor. (Harris, 1954, p. 786)

However, this methodology is not limited only to the treatment of synonyms as Harris
further proposes a method to quantify shades and differences of meaning:

If A and B have some environments in common and some not (e.g. oculist
and lawyer) we say that they have different meanings, the amount of
meaning difference corresponding roughly to the amount of difference in
their environments. (Harris, 1954, p. 786)

Similar views were shared by other linguists, e.g. Firth (1957, p. 11) writes that “you
shall know a word by the company it keeps.”

The notion of semantic similarity had over time become popular among psy-
chologists to explain various psychological phenomena. However, Miller and Charles
(1991) note that it was often used without understanding the processes behind seman-
tic similarity judgments. In Contextual Correlates of Synonymy (1965), Rubenstein
and Goodenough present an early attempt to examine experimentally the correla-
tion between the similarity of context and the similarity of meaning postulated by
the distributional hypothesis. The authors consider as evident the fact that similar
words appear in similar contexts and that, conversely, very dissimilar words appear in
different contexts. They are especially interested to see, though, if the proposed quan-
tification of the similarity of meaning holds also for words in intermediate positions,

6
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such as the oculist-and-lawyer pair mentioned by Harris. In order to investigate this,
Rubenstein and Goodenough collected human judgments of semantic similarity on the
scale of 0 to 4 for 65 pairs of words which range from highly similar to semantically
unrelated. For each “theme word” appearing in these pairs, the authors collected 100
sentences from which the contextual distribution of the word was extracted. This dis-
tribution was represented by the set of words which appeared in the 100 sentences and
possibly satisfied some additional conditions, like being a content word or appearing
close to the theme word in the parse tree of the sentence. Contextual similarity of two
words was then calculated as the overlap of their sets of context words. The authors
present two conclusions: (1) There is a positive relationship between the similarity of
context and the similarity of meaning. (2) It is safe to infer that two words are highly
similar in meaning if their contexts are highly similar. However, this does not seem to
hold for words of medium or low semantic similarity as they differ relatively little in
overlap. Nevertheless, Rubenstein and Goodenough (1965) speculate that the second
conclusion could have been affected by the experimental setup and should therefore
be further investigated.

It took more than two decades before Miller and Charles tried to address the issue
again in a paper titled Contextual Correlates of Semantic Similarity (1991). In their
treatment, they redefined the way context similarity was measured and showed that
it was possible to infer semantic similarity of words even for words in the middle
positions. Miller and Charles proposed that semantic similarity of a pair of words
is a function of the contexts in which the words occur. They defined the conceptual
representation of a word to be the knowledge of how the word is used in language.
This representation includes syntactic, semantic, pragmatic and stylistic constraints
and is learned from linguistic contexts. The representation, however, is more than
just a set of contexts:

[A] word’s contextual representation is not itself a linguistic context, but
is an abstract cognitive structure that accumulates from encounters with
the word in various (linguistic) contexts. (Miller and Charles, 1991, p. 5)

Inspired by the distributional hypothesis of Zellig Harris, the authors stated a
closely related contextual hypothesis :

The similarity of contextual representations of two words contributes to
the semantic similarity of those words1. (Miller and Charles, 1991, p. 9)

Miller and Charles claim that the limited results of Rubenstein and Goodenough
(1965) are due to the measure which does not fully capture the similarity of contexts
and propose an approach based on substitutability. Sentences containing both words

1This is a relaxed form of the strong contextual hypothesis, which equates semantic similarity
with the similarity of contextual representations.
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are collected with the two theme words removed and subjects are asked to determine
which contexts are acceptable for each word. Semantic similarity is then directly pro-
portional to the number of shared contexts. The obtained results were consistent with
the contextual hypothesis and presented stronger evidence for it than co-occurrence
counts. It is important to note, though, that this in itself does not present a case
against the use of co-occurrence counts, as the corpus employed by Rubenstein and
Goodenough (1965) was rather limited.

Together, these two experiments were important in providing psychological sup-
port for the distributional hypothesis. Nevertheless, the full strength of the method-
ology became fully visible only with the implementation of first large scale models.
These implementations were based on the vector space model originally developed in
information retrieval. This is not surprising, since the goal of information retrieval
systems is to order documents in a collection according to their relevance to a given
user query, which inherently requires the systems to have some notion of word and
document meaning. Both the query and the documents are represented in the same
vector space using the bag-of-words method (Manning et al., 2008). Using bag
of words, a document (or a query) is regarded as an unordered collection of words
in which only the frequency of words matters. Therefore, this method completely
ignores word order and grammar.

A simple information retrieval system can be created as follows. The document
collection is represented by a matrix D with as many rows as there are vocabulary
terms and as many columns as there are documents. The entry Di,j represents the
number of occurrences of term i in document j. Such a matrix is called the term-
document matrix. In an equal fashion, qi is the frequency of term i in the query
q. The similarity between the query and the document D∗,i, i.e. the i-th column of
the collection matrix, is calculated as the cosine of the vectors in the hyperspace:

sim(D∗,i,q) =
D∗,i · q
‖D∗,i‖ · ‖q‖

(2.1)

The more similar the document is to the query, the smaller is the angle between the
representation vectors of the query and the document. The cosine is 1 for vectors
“pointing” in the same direction and 0 for orthogonal vectors. The same matrix can
be also used to measure similarity between documents. If two documents have a
similar topic, they contain similar words and their representation vectors (columns in
the matrix D) are similar.

When comparing two documents under this model, all words are given the same
weight. However, it is clear that less frequent words like “beekeeping” or “robotics”
are more informative about the topic of a document than words such as “is”, “the”
or “give”. We can address this problem in two ways. A simple solution is to create
a list of stop words to remove from the bag-of-words representations. Nevertheless,
this is not an optimal solution, because the words that are left still vary in their
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usefulness. A better solution is to employ a weighting scheme, which would adjust
the collected co-occurrence counts. One such scheme is the Term Frequency-Inverse
Document Frequency (TF-IDF) model (Manning et al., 2008). It adjusts the term
frequency value Di,j by multiplying it with inverse document frequency, which is a
measure of how common the term i is across all documents. Using TF-IDF, rare
terms are weighted up and their contribution to the final similarity score increases,
whereas very frequent terms are dampened.

So far, the focus has been put on documents. However, we can move from looking
at columns of the term-document matrix to looking at its rows. Each row can be, in
fact, considered a distributional representation of the corresponding vocabulary term,
with columns – documents – being context items in the sense of the distributional
hypothesis. Moreover, the representation using the t × d term-document matrix is
probably redundant and the distribution of a word in a collection of documents could
be approximated by a smaller set of latent factors. Typically, the number of columns
is reduced from the order of thousands of documents to several hundred that represent
the most important latent factors. This technique was first introduced in Deerwester
et al. (1990) as part of the latent semantic indexing model for information retrieval.
The authors employed the Singular Value Decomposition (SVD) method to dis-
cover the latent factors. Using SVD, a t× d matrix M can be decomposed into:

M = TSDT ,

where T is a t× r matrix providing a representation for terms, S is a r × r diagonal
matrix with the singular values of M sorted from largest to smallest, D is a d × r
matrix of document representations, and r is the rank of the matrix M . Note that
the representation spaces of documents and terms have both r dimensions. Setting
the smallest singular values to 0, we can reduce the dimensionality of the matrix,
leaving only those dimensions that account for most of the variation in the original
dataset. Dimensionality reduction has also the added advantage of reducing noise.

Drawing on presumed similarities between information retrieval in external sys-
tems and in the human mind, Landauer and Dumais (1997) interpreted the techniques
of latent semantic indexing from a cognitive point of view and employed them to model
vocabulary learning in children. Their latent semantic analysis (LSA) model –
based on a word-paragraph matrix – performed just as good as second-language En-
glish speakers on a multiple-choice synonym test and closely modelled the estimated
improvement rate per paragraph of seen text for schoolchildren. Landauer and Du-
mais offer two interpretations of these results: (1) Most of the knowledge needed to
answer vocabulary tests is derivable from co-occurrence statistics. (2) Inner workings
of the LSA model are analogous to the mechanisms through which humans acquire
knowledge.

Singular value decomposition is central to LSA and its goal is not just the reduc-
tion of noise and computational complexity. Landauer and Dumais give the following
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example. Suppose a communicator generates text by selecting words that are near
each other in his own high-dimensional semantic space. We as receivers create esti-
mates of distances between words by using word-paragraph co-occurrence statistics.
Although these are only rough estimates, they can be improved if we start modelling
the words in a space of the same or similar dimensionality as the one of the com-
municator. By fitting the representations to a space with less dimensions, we make
a more effective use of the constraints available in the text. Landauer and Dumais
have for example shown that presenting extra text to the model improves indirectly
the representation of words not present in this new text. The reduced representation
could also be crucial for producing good similarity estimates among pairs of words
that have never been seen together. Through a series of experiments on the synonym
test, Landauer and Dumais (1997) have shown that the model performs best when
the number of dimensions is in the low hundreds.

So far, the meaning of words has been modelled by word-document or word-
paragraph matrices. However, the context could be further reduced to single words.
Schütze (1992) describes a word-word matrix model in which the distribution of a
word is represented by the frequency of its co-occurrence with other words in window
of a certain size. The co-occurrence counts are collected by moving this window over a
text corpus. Dimensionality reduction through SVD can be applied to this representa-
tion too, although Schütze believes that its use is driven mostly by practical memory
usage considerations rather than by the need to improve or smooth the representations
themselves. A similar methodology is used by Lund and Burgess in their Hyperspace
Analogue to Language (HAL) model (Lund and Burgess, 1996). By analysing the
high-dimensional neighbourhoods of words and clustering their representations, the
authors show that the co-occurrence procedure is successful in extracting general se-
mantic information from text and that the distance in the semantic space correlates
with reaction times from lexical priming studies.

Many new ways to build semantic models have been proposed in recent years.
For example, neither HAL nor LSA make explicit use of linguistic information. This
issue was only addressed later by models that tried to filter or link context words
by syntactic relations (Padó and Lapata, 2003; Baroni and Lenci, 2010). Moreover,
there have been attempts to redefine semantic representation in probabilistic terms.
Griffiths et al. (2007) describe one such probabilistic approach based on the Latent
Dirichlet Allocation (LDA) topic model (Blei et al., 2003). In topic models, each
document in a corpus is represented as a probability distribution over a set of topics.
The topics are, in turn, defined as distributions over words. The difference between
topics resides in different probabilities that they assign to words. A topic that we
could label as “finance” would give high probability to words like bank, money, and
interest, whereas a “beekeeping” topic would prefer bees, honey, and hive. A semantic
representation of a word in this model is defined as the distribution of the word
over these abstract topics. The topics are automatically induced from co-occurrence
matrices and their number can be varied, giving rise to a different way of achieving
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Feature norms:

• have stripes

• have teeth

• are black

Distributional models:

• live in jungle

• can kill

• risk extinction

Figure 2.1: Difference between human-elicited feature norms and information ex-
tracted from textual distributional models (Baroni et al., 2010).

dimensionality reduction.

2.2 Embodied Models of Meaning

Semantic models based on the distributional method were successfully employed
in many areas, ranging from applications in artificial intelligence to modelling psy-
chological phenomena, and have therefore shown to be useful sources for inferring
semantic representations. Their success is all the more surprising given that the only
input they require is a large collection of text. Nevertheless, their cognitive plau-
sibility has been questioned since the resulting representations are based purely on
linguistic data and are therefore disembodied2. This issue can be illustrated by the
difference between how humans describe concepts and what kind of information is
provided by distributional models (Figure 2.1). Distributional models emphasize ab-
stract and encyclopedic information, whereas human-produced feature norms tend to
give higher importance to grounded, sensory-motor properties of objects (Andrews
et al., 2009; Baroni and Lenci, 2008).

Andrews et al. (2009) claim that knowledge acquired from language has to re-
late to the world around us in order to be pragmatically useful. Moreover, numerous
neuroimaging studies show activations in sensory-motor cortices during language pro-
cessing (Binder and Desai, 2011), which raises the question of whether these systems
are involved in semantic representations and if yes, then to what extent. The activa-
tions could be explained by simulations of modal states captured during perception,
action, and introspection, on which embodied theories of cognition base mean-
ing and cognition in general (Gallese and Lakoff, 2005; Barsalou, 2008). This view
is, however, criticized by Mahon and Caramazza (2008), who claim that the activa-
tions in sensory-motor areas can be accounted for by disembodied theories too. In
addition, embodied theories are often challenged on the representation of abstract

2For that reason, distributional semantic models can be criticized on the same grounds as pure
symbolic systems, see for example Harnad (1990).
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concepts that are not easily connected to perceptual experience.
Binder and Desai (2011) and Meteyard et al. (2012) reviewed the current debate

and evidence from neuroscientific and neuropsychological studies and both came to
similar conclusions: (1) Neither disembodied nor fully embodied accounts of meaning
are supported by existing data. (2) Semantic memory consists of both modality-
specific and supramodal representations, the latter created in high level convergence
zones which combine information from multiple modalities. These findings and the
evidence that linguistic and perceptual data are interdependent (Louwerse, 2008;
Riordan and Jones, 2011; Andrews et al., in press) have led to research that aims at
integrating both data sources in single semantic models. An overview of this research
area is given in the next section.

2.3 Models integrating distributional and embod-

ied accounts of meaning

Andrews et al. (2009) acknowledge the importance of both experiential data, de-
rived from our perception and interaction with the world and extralinguistic in na-
ture, and intralinguistic distributional data, representing the statistical distribution
of words across spoken and written language, for learning semantic representations.
The authors further point out that learning from both experiential and distributional
data is more than just a simple combination of two independent representations as it
allows the discovery of correlations between the two data sources and speculate that
the final representations in human brain are based on these intercorrelations. Us-
ing speaker-generated feature norms as experiential data, Andrews et al. learn topic
models first on the two data sources independently and then jointly over both expe-
riential and distributional data. The joint model learns couplings of feature clusters,
i.e. distributions over features akin to topics in topic models, with discourse topics
extracted from a text corpus. Having evaluated the models on a series of tasks, the
authors conclude that semantic representations learned from multiple data sources in
combination are more realistic than those obtained from either source alone.

Johns and Jones (2012) focus on exploiting the redundancies between language and
perception and present a model capable of bootstrapping perceptual representations
from a small set of seed representations. The model relies on two components. The
first component is a distributional semantic model derived from text. Perceptual
representations, in this case feature norms from McRae et al. (2005), form the second
component. A complete representation of a concept is given by concatenating these
two representations. However, as the feature norms are available only for a limited set
of concepts, most of the concepts do not have their perceptual representation assigned.
The proposed method induces these representations through an idealized perceptual
simulation based on past experiences with other, related concepts (in this case the
seed set of concepts). For example, the perceptual representation for a table can be
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induced as a weighted combination of representations for objects such as a chair, wood,
and a room. The weights are given by semantic similarity scores between table and
the individual terms based on the distributional semantic model. The induction step
is repeated twice and all concepts in the model have their perceptual representations
assigned. After studying the effect of lexicon and corpus size, the authors demonstrate
that the method is successful in inducing meaningful representations and evaluate
them on tasks such as priming modelling and semantic similarity.

Silberer and Lapata (2012) similarly use feature norms from McRae et al. (2005)
as proxies to sensory-motor information and examine three different methods of com-
bining them with a distributional semantic model extracted from the British National
Corpus (BNC). The first approach based on topic models is identical to the one pro-
posed in Andrews et al. (2009). The second model, already used in Johns and Jones
(2012), is a simple concatenation of feature norm vectors and distributional represen-
tations. The third model combines the two modalities using Canonical Correlation
Analysis (CCA) (Hardoon et al., 2004). CCA is a statistical technique used in this
case for dimensionality reduction across two semantic spaces – perceptual and tex-
tual. It exploits the linear relationship between two different representations of the
same concept. All models were evaluated on word association, semantic similarity,
and perceptual inference tasks in order to answer the following three questions: (1)
Are multimodal semantic spaces better at modelling behavioural data? (2) What is
the best technique to combine textual and perceptual information? (3) Is it possible
to infer perceptual features of concepts for which they are missing? The results show
the following: All three models show performance gains when both modalities are
included as opposed to only one. The model of Andrews et al. (2009) performed best
at semantic similarity tasks, followed by the CCA model. The model of Johns and
Jones (2012), on the other hand, was the best at inducing perceptual features.

The issues with using speaker-generated feature norms have already been alluded
to in the introductory chapter. Apart from the fact that they are generally available
only for small numbers of concepts, it is also questionable whether they always repre-
sent our everyday sensory-motor experience. Some feature norm sets combine percep-
tual information with other kinds of knowledge, such as the feature requires landlord
for the apartment concept in the popular set of McRae et al. (2005) (Figure 2.2).
Moreover, the features might be skewed towards certain kinds of experience which
are easy to recall for human subjects that are generating them. It is therefore impor-
tant to explore other and more direct methods of acquiring perceptual information.
The models discussed below employ computer vision methods to generate representa-
tions of images in terms of visual words3 and use these representations as a surrogate
for visual information.

Feng and Lapata (2010) induce topic models jointly over visual and textual words

3In this approach, a common vocabulary of “visual words” is extracted from an image collec-
tion and these words are subsequently used to create discrete image representations. They will be
discussed in more detail in Chapter 3.
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Apartment:

• found in high rises

• has elevators

• is furnished

• requires a landlord

• has tenants

Tangerine:

• has vitamin C

• grows in Florida

• grows on trees

• is citrus

• grows in warm cli-
mates

Figure 2.2: Many features included in the feature norm set McRae et al. (2005) are
not directly related to perceptual experience.

extracted from a dataset of articles paired with images illustrating some parts of its
content. The underlying assumption is that there is a shared set of topics that gen-
erated both the images and the text. The model is evaluated on two tasks: semantic
similarity and word associations, with the similarity between two words measured by
the extent to which they share the same topics. The model that incorporated both
text and images outperformed the one using only text.

Bruni et al. (2011, 2012a,b) enrich distributional semantic models based solely on
text with visual features from labelled images. The authors first collect co-occurrence
counts of concepts with visual words across a large image collection and create visual
semantic models. Subsequently, they show that visual and text-based models contain
complementary information and discuss different ways to combine visual and text-
based models. Their combined semantic model is evaluated on several tasks and
outperforms a pure textual model on some of them, e.g. on semantic similarity. This
approach served as the basis for the VSEM toolkit and will be described in more
detail in the following chapter.
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VSEM: An open library for visual
semantics representation

3.1 Introduction

In this chapter, we will describe a typical computer vision pipeline for representing
images. We will also show how it is implemented in the VSEM toolkit. In this
method, an image is regarded as a document and described by general features kept
in a dictionary. Therefore, just as a document can be described by the bag-of-words
method, an image can be described by a bag of visual words.

The basic pipeline of image representation is as follows. Firrst, interesting local
patches of an image are found. These are subsequently described by descriptor vectors
and mapped to their respective visual words from a pre-made visual dictionary. A
visual word can be regarded as a cluster of similar descriptor vectors. In this fashion,
the whole image can be described by a visual word histogram. To arrive at a concept
representation, histograms of images tagged with the same concept are aggregated.

3.2 Pipeline for visual representation

The computer vision pipeline for extracting representations of images can be di-
vided into two main steps: (1) vocabulary creation, and (2) image representation.
First, a common vocabulary of visual words is created by clustering lower level image
features from a training set. Having created the vocabulary, the system can proceed
to representing images in terms of bag-of-visual-words histograms using the following
steps:

• extraction of local image features,

• mapping of local features to higher-level visual words contained in the vocabu-
lary,

15
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• creation of bag-of-visual-words histograms, based on the mapping obtained in
the previous step, and

• spatial binning.

This pipeline is illustrated in Figure 3.1.

  

feature extraction spatial binningencoding

Figure 3.1: An example of a bag-of-visual-words image representation pipeline. First,
local features are extracted from an image. Each is mapped to a visual word from a
predefined vocabulary. Spatial binning is performed as the last step (Grauman and
Leibe, 2011).

However, we are not interested only in producing representations of images. Our
ultimate goal is to create visual representation of concepts. Therefore, we need at
least one more step:

• aggregation of visual words on a per-concept basis in order to obtain the co-
occurrence counts for each concept.

At this point, we have arrived at conceptual representations that are visual ana-
logues to semantic models extracted from text. Just as with the textual co-occurrence
models, we can refine the counts by applying the following two steps:

• transformation of counts into association scores, and

• dimensionality reduction.
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3.2.1 Feature Extraction

Local image features are low-level features that encode information from small,
representative regions of images, also known as “keypoints”. It is important for
the process of extracting and encoding this information to be invariant to common
image transformations such as translation, rotation and scaling (Grauman and Leibe,
2011) so that similar information is extracted from images of the same object under
different conditions. These invariant features are important for image matching.
VSEM uses an implementation of the widely-used Scale Invariant Feature Transform
method (SIFT) (Lowe, 2004), which transforms an image into a set of 128-dimensional
vectors called descriptors.

3.2.2 Creating a Vocabulary of Visual Words

In this step, the set of descriptors from all images is clustered using the standard
k-means clustering algorithm into k clusters1 (represented by coloured dots in Figure
3.2). Each cluster is regarded as a distinct visual word and represents a set of similar
visual features encountered across all images in the dataset.

  

feature extraction

Figure 3.2: A common vocabulary of visual words is created by clustering continuous
SIFT descriptors extracted from a collection of images.

3.2.3 Encoding

At this point of the pipeline, we have the following two components: (1) a set of
descriptors for each image, and (2) a common vocabulary of visual words. During
the encoding step, each descriptor is mapped onto a visual word and the image
is represented by a bag-of-visual-words (BoVW) feature vector, where each feature

1Generally, only a random subset of descriptors is used by the clustering algorithm due to
memory considerations. VSEM uses a random subset of 1 million descriptors.
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represents the number of descriptors that were mapped to the respective visual word.
We are therefore making the transition from a continuous representation of an image
using SIFT descriptors to a discrete representation with visual words.

The most common encoding strategies are: (1) hard quantization, which maps
a descriptor to a cluster whose centroid is closest, measured by Euclidean distance,
and (2) Fisher encoding, which exploits the average first and second order differences
between the SIFT descriptors and the centres of a pre-trained Gaussian mixture model
(Perronnin et al., 2010; Chatfield et al., 2011).

3.2.4 Spatial Binning and Localization

The bag-of-words model by itself does not contain any information regarding the
position of individual words, both in texts and in images. Spatial information can
be introduced into the model by using the technique called spatial binning (Lazebnik
et al., 2006), during which an image is divided into several regions and the encoding
step is done for each region separately. As a result, every region is represented by its
own feature vector and these are then concatenated to create the so called spatial
histogram.

Furthermore, it is possible to map descriptors from keypoints on the surface of the
object separately from those of the background, in case this annotation is available.
The system then produces two representations, one of the object and one of the
background, which can be combined or used separately in the later stages.

3.2.5 Aggregation

At this point, we have bag-of-words representations for all images. As each concept
is represented by several images, the next step is to pool individual image represen-
tations to create a single conceptual representation, as illustrated in Figure 3.3. In
VSEM, this is achieved by summing up the individual images vectors.

3.2.6 Transformations

Just as in semantic models created from text corpora, some visual words are more
informative about concepts than others. In order to distinguish between interesting
co-occurrences from those that are due to chance, we can employ various weighting
schemes to adjust the raw co-occurrence counts. VSEM implements two types of
mutual information association score: local (LMI) and pointwise (PMI) (Evert, 2005).
The dimensionality of the final semantic space can be reduced using singular value
decomposition.
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Figure 3.3: To create a single representation, feature vectors from all images tagged
with a given concept are pooled (Bruni et al., 2013).

3.3 Implementation

VSEM is implemented in Matlab and is divided into four main packages. Their
description follows.

dataset The dataset package implements several standard dataset formats. It
loads an image collection from its location and checks for its consistency with
the given format.

vision This package implements the whole visual pipeline described in the pre-
vious section. It has three sub-packages, features, vocabulary, and histograms.
The extraction of visual features is built upon the state-of-the-art VLFeat
toolkit (Vedaldi and Fulkerson, 2010).

concepts This package contains the semantic space functionality, including ag-
gregation of feature vectors from individual images and matrix transformations.

benchmarks Contains various evaluation benchmarks that are described in Chap-
ter 4.

The toolkit comes with demos that illustrate individual steps. We will now de-
scribe an example implementation of the full pipeline. The following three variables
will be used throughout the pipeline:



Chapter 3: VSEM: An open library for visual semantics representation 20

• imagePaths – paths to all images in the dataset,

• annotations – image labels and possibly extra annotation, such as object lo-
calization,

• conceptList – list of all objects.

We can either populate them on our own or use the functionalities of the VsemDataset
object, which can import several standard dataset formats:

dataset = datasets.VsemDataset(imagesPath, ’annotationFolder’,...

annotationPath);

The dataset object has now prepared the whole dataset and we can extract the three
variables that are needed in the rest of the pipeline:

annotatedImages = dataset.getAnnotatedImages();

imagePaths = annotatedImages.imageData(:,1);

annotations = annotatedImages.imageData(:,2);

conceptList = annotatedImages.conceptList;

clear annotatedImages;

The next step is the vocabulary creation. The following lines of code cluster the
image descriptors using k-means clustering algorithm and return a vocabulary that
is required for the hard quantization encoding method:

featureExtractor = vision.features.PhowFeatureExtractor();

KmeansVocabulary = vision.vocabulary.KmeansVocabulary(’voc_size’,...

vocabularySize);

vocabulary = KmeansVocabulary.trainVocabulary(imagePaths,...

featureExtractor);

Extracting a vocabulary for Fisher encoding is analogous:

featureExtractor = vision.features.PhowFeatureExtractor();

GMMVocabulary = vision.vocabulary.GMMVocabulary(’voc_size’,...

vocabularySize);

vocabulary = GMMVocabulary.trainVocabulary(imagePaths,...

featureExtractor);

The configuration of the encoding step and of spatial binning is governed by the
histogram extractor object:

histogramExtractor = ...

vision.histograms.bovwhistograms.VsemHistogramExtractor(...

featureExtractor, vocabulary, ’localization’, localization,...

’quad_divs’, squareDivisions, ’horiz_divs’, horizontalDivisions);
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The extraction of image representations and their aggregation into a single semantic
space is achieved with the following lines:

conceptExtractor = concepts.extractor.VsemConceptsExtractor();

conceptSpace = conceptExtractor.extractConcepts(histogramExtractor, ...

imagePaths, annotations, conceptList);

The raw co-occurrence counts can be tranformed using local mutual information:

conceptSpace = conceptSpace.reweight();

The last step is to assess the quality of the final semantic model against a standard
semantic relatedness benchmark:

[score, pValue] = benchmarks.runBenchmark(conceptSpace, ’menFull’);

Further details are given in Appendix 1 and on the website of the toolkit:

http://clic.cimec.unitn.it/vsem/
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Evaluation

4.1 Tasks

Semantic models created by a visual pipeline similar to that of VSEM have al-
ready been evaluated previously in Bruni et al. (2011) and Bruni et al. (2012a). The
authors primarily focused on producing and evaluating multimodal semantic spaces
that combined models extracted separately from text and images. Bruni et al. (2011)
test the multimodal model on semantic relatedness and concept categorization tasks
and show that enhancing distributional semantic models with features from images
leads to interesting qualitative differences in performance. However, they underline
that their results should be considered as a proof of concept only and further ex-
perimenting is needed. In Bruni et al. (2012a), the authors extend the set of tests
by two more tasks: (1) object colour guessing, and (2) distinguishing between literal
and non-literal uses of colour terms. Their results show that distributional semantic
models based on text can be outperformed by models extracted from images on tasks
in which visual information is important.

In our evaluation, we would like to focus on models extracted from images only
in order to investigate the following questions:

• How does the performance of visual semantic models on a semantic relatedness
task depend on the selected number of visual words?

• What do the concept neighbourhoods look like?

• How do label co-occurrences affect these results?

22
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10 most common tags
white, black, blue, man, red,
woman, green, hair, girl, gray

10 of the least common tags
aarrgghh, ability, acknowledge, botox, heartburn,
leaflet, narration, peperoni, perception, zoidberg

Table 4.1: Examples of the most and the least common tags in the ESP Dataset.

1,440,550 total number of label-image associations
100,000 total number of pictures
20,515 number of labels
9,455 number of labels used three times or more
8,512 number of labels used once only
2,548 number of labels used twice
70.22 average number of images per label

42 maximum number of labels per image
14.41 average number of labels per image

5 minimum number of labels per image

Table 4.2: Statistics of the ESP Dataset

4.2 Experimental Setup

4.2.1 Image dataset

For our experiments, we will use the ESP Game Dataset1. It is a large collection
of images with English labels that were collected through the ESP Game (von Ahn
and Dabbish, 2004), in which two human players partnered online simultaneously
suggest labels for a randomly selected image and are required to rapidly agree on a
common label (some examples of the produced labels are given in Table 4.1). When
and if both players suggest the same label, it is added to the set of labels for that
image. This is an effective and simple method for labelling large amounts of images
and has proved to produce reliable labels, as further attested by our experiments.
Basic statistics of the ESP Dataset are given in Table 4.2.

We have selected this dataset for three main reasons: (1) It has been used before
and therefore it simplifies comparison between systems. (2) It covers a wide range of
images and concepts. (3) It is publicly available. One of its main drawbacks, however,
is that the quality of pictures is sometimes low and the pictures often aren’t typical
representatives of their labels.

We have reduced the total number of concept labels in ESP to 1236 and use the
total of 99,971 images.

1The dataset is available for download at http://www.cs.cmu.edu/∼biglou/resources/
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Word pair Score
type kind 8.97

president medal 3.00
war troops 8.13

stock CD 1.31
physics chemistry 7.35
bishop rabbi 6.69
drink ear 1.31
drink mouth 5.96
drink eat 6.87

Table 4.3: Examples of word pairs and their similarity judgments from the Word-
Sim353 dataset.

4.2.2 Visual pipeline

We will use the VSEM toolkit for our experiments with the following settings:

• Descriptors: SIFT descriptors with the gray colourscale settings.

• Dictionary: k-means dictionary.

• Encoding: Hard quantization.

• Spatial binning: 2 square divisions, 3 horizontal divisions, giving rise to a feature
vector eight times the size of the number of visual words.

4.2.3 Benchmarks

In order to assess the quality of semantic models created from images, we will
examine the correlation of semantic relatedness estimates produced by the model
(using the cosine similarity measure as described in Chapter 2) with human-assigned
similarity judgments. Specifically, we will use the WordSimilarity-353 Test Collection2

(Finkelstein et al., 2002) and the MEN Test Collection3 (Bruni et al., 2012a), both
of which are included in the VSEM toolkit:

WordSim353 is a collection of 353 word pairs with similarity scores assigned
by 29 subjects. The relatedness of words was estimated on a scale from 0
(completely unrelated) to 10 (very much related or identical). The collection
includes all 30 word pairs from the work by Miller and Charles (1991) discussed
in Chapter 2. WordSim353 is a common collection and has been used by other

2http://www.cs.technion.ac.il/∼gabr/resources/data/wordsim353/wordsim353.html
3http://clic.cimec.unitn.it/∼elia.bruni/MEN.html
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Word pair Score
metro train 41

country work 19
happy post 14

ceramic ocean 8
cute dirty 11

frozen shop 13
paint sing 7

airplane guitar 7
dessert wine 23

Table 4.4: Examples of word pairs and their relatedness judgments from the MEN
dataset.

multimodal semantic models, for instance in Silberer and Lapata (2012) and
Bruni et al. (2012a). One of its drawbacks is that it consists mostly of noun-
noun word pairs. Examples of some of the pairs and their similarity judgments
are shown in Table 4.3.

MEN was introduced in Bruni et al. (2012a) and consists of 3,000 word pairs,
randomly selected from words that occur at least 700 times in the ukWaC and
Wackypedia corpora4 and at least 50 times as tags in the ESP dataset. During
the dataset creation, human subjects were presented with two pairs of words
and were asked to judge which pair is more semantically correlated. Each pair
was rated in this way against 50 other randomly selected comparison pairs and
the scores are therefore on a 0 to 50 scale, representing the number of times
the given pair was judged more similar than its comparison pair. In contrast to
WordSim353, the MEN dataset contains a substantial percentage of verb-noun
and noun-adjective pairs. Examples from this dataset are shown in Table 4.4.

Our dataset reaches a coverage of 270 word pairs out of 353 on WordSim353 and
2927 word pairs out of 3000 on MEN.

4.2.4 Similarity and correlation measures

In order to measure the similarity between concepts, we will use the cosine sim-
ilarity measure introduced in Chapter 2. For determining the correlation between
similarity estimates from semantic models and human judgments, we will employ
the Spearman’s rank correlation coefficient. The values of two variables Xi and Yi,
which represent the model estimates and human judgments for n word pairs in the

4http://wacky.sslmit.unibo.it/
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No. of visual words
WordSim353 MEN

Counts LMI Counts LMI
5 0.3027 0.2772 0.3084 0.3114
10 0.2987 0.2931 0.3166 0.3699
50 0.3203 0.2976 0.2968 0.3939
100 0.3162 0.3100 0.2741 0.3976
500 0.2993 0.3118 0.2315 0.3913

1,000 0.2943 0.3092 0.2163 0.3802
2,500 0.2863 0.3134 0.1986 0.3729
10,000 0.2704 0.3104 0.1740 0.3513
20,000 0.2601 0.3116 0.1658 0.3424

Table 4.5: The effect of the number of visual words on Spearman correlation of models
on WordSim353 and MEN datasets. All scores significantly different from zero on a
p < 0.001 level.

benchmark, are converted to ranks xi and yi, from which the correlation is computed
as:

ρ =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
.

4.3 Results

4.3.1 Number of visual words

The effect of the number of visual words on the Spearman correlation scores of the
models on WordSim353 and MEN datasets is reported in Table 4.5. When considering
only raw co-occurrence matrices, the models perform best when the number of visual
words is limited to dozens. As the number of visual words grows, the matrices become
sparser (also due to the fact that the image dataset is limited) and the cosine similarity
measure does not seem to capture the similarities between concepts well enough any
more. However, this can be partly alleviated by the use of association scores. It is
clear from the results that local mutual information improves the final performance
significantly, especially when considering models with large numbers of visual words
(e.g. 20,000). The overall importance of applying local mutual information is rather
limited in the case of the WordSim353 dataset, which is probably due to its smaller
size. However, its role increases significantly for the MEN dataset, where it accounts
for the significant jump in correlation from 0.3166 to 0.3976.

It can be assumed that the optimal number of visual words depends largely on
the size of the image dataset, the association score used and on the type of spatial
binning. In our experimental setup and considering only the larger MEN dataset, the
number of visual words between 50 and 1000 produce optimal results.
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Image Labels
1 air, airplane, cloud, engine, flight, flying, grey, sky, white
2 building, city, cloud, dirt, old, panorama, road, ruins, street, window
3 art, brown, floor, paitning, picture, room, seat, wall, white, wood
4 baby, boy, boys, brother, kids, red, stripes
5 blue, face, man, movie, star

Table 4.6: Labelsets from the ESP dataset.

Label-label
Counts 0.5983

LMI 0.7466

Label-image
Counts 0.6686

LMI 0.6718

Table 4.7: Spearman correlation of label-label and label-image semantic models on
the MEN dataset.

4.3.2 Effect of label co-occurrences

In the ESP dataset, images are usually labelled with multiple concepts. Some of
these label sets are illustrated in Table 4.6. By examining the table, it is clear that
the system could learn meaning similarities only by exploiting label co-occurrences.
If two concepts, e.g. lighthouse and tower, co-occurred often in the image collection,
their visual word feature representations would be aggregated from mostly identical
images. The two concepts would therefore be judged as very similar by the cosine
correlation measure. However, this would not be due to their shared visual features,
but only due to their co-occurrence. We therefore wanted to: (1) examine this co-
occurrence effect, and (2) try to eliminate it and examine the differences.

In order to see how much information is contained in label co-occurrences, we
have created two co-occurrence matrices: label-label and label-image (akin to the
HAL and LSA models of distributional meaning considering co-occurring labels as
context). These models are very easy to create, as they completely bypass the visual
pipeline. We then assessed these semantic models against the MEN dataset. The
results are reported in Table 4.7 and they lead us to two conclusions: (1) Clearly,
semantic models based on image labels are very good and interesting information can
be gained by exploiting them. (2) The ESP Game and its rules have succeeded in
providing label sets that are meaningful and without much noise.

Judging by the results of label co-occurrence matrices, it would be possible to
criticize semantic models extracted from images for exploiting label co-occurrences
more than actual visual features and that the correlations with human relatedness
judgments are mostly due to this effect. In order to show the opposite, we have
created a reduced label set for the ESP collection. Whenever a pair of words that
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No. of visual words
WordSim353 MEN

Counts LMI Counts LMI
5 0.2882 0.2646 0.3071 0.3107
10 0.2696 0.2485 0.3148 0.3681
50 0.2923 0.2786 0.2953 0.3934
100 0.2837 0.2938 0.2723 0.3979
500 0.2681 0.2984 0.2288 0.3924

1,000 0.2574 0.2948 0.2131 0.3816
2,500 0.2475 0.2988 0.1949 0.3744
10,000 0.2313 0.2875 0.1699 0.3527

Table 4.8: Spearman correlation of semantic models built from the ESP image col-
lection using reduced label sets on MEN and WordSim353. All scores significantly
different from zero on a p < 0.001 level.

was present in either WordSim353 or MEN datasets occurred together as labels for one
single image, we have randomly removed one. In this way, no two directly compared
words appear together as labels for one image. Using this reduced collection, we
have recreated the semantic models and assessed their performance on MEN and
WordSim353. The results, which are reported in Table 4.8, show that the effect of
the label set reduction is not strong. Furthermore, Bruni et al. (2012a) show that
semantic models from images perform just as good as or better than the two models
extracted solely from labels on tasks requiring distinguishing literal and non-literal
uses of colour terms.

4.3.3 Concept neighbourhoods

The resulting semantic space can also be evaluated qualitatively by examining
the neighbourhoods of concepts. The neighbourhood of a given concept consists of
concepts that are judged by the model to be most similar to it. These structures
are discussed in detail in Andrews et al. (2009), where the authors show qualitative
differences between semantic models from text and from feature norms. Examples of
the set of nearest neighbours that our system produces is given in Table 4.9. Unfor-
tunately, it is impossible to eliminate the effect of label co-occurrences by using the
ESP collection, as the number of images per concept would have to be greatly reduced
and the results would therefore become unreliable. It will be nevertheless important
to examine concept neighbourhoods produced by a semantic model extracted from a
large enough image collection where each image is assigned one label only.
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Concept Nearest neighbours
cheerleaders ceremony, pepper, peacock, tribe, parade, dolls, decoration, team

skyline castle, sky, town, tower, church, bridge, frozen, roof
bishop sting, flamingo, chopper, space, dark, moon, glow, night

tree rock, park, statue, sculpture, palm, lion, stone, grass
animal green, dirty, winter, brown, bird, dead, dog, sleep, grey
bucket basket, pot, summer, patter, nuts, painting, run, cow, fun
chisel journey, mammals, screwdriver, titanium, profit, diamond, stich
sailing temple, crane, lighthouse, ancient, pier, tower, castle, monument

Table 4.9: Nearest neighbours of concepts.

4.3.4 Result summary

We have evaluated the semantic models extracted from images using the VSEM
toolkit on WordSim353 and MEN datasets, showing positive correlation with human
relatedness judgments. Furthermore, we tested the performance of the systems in
relation to the number of visual words, which is a fundamental parameter, and showed
that systems with the number of visual words in the order of hundreds produce
optimal results. However, this is most certainly conditioned by the number of concepts
and the size of the dataset (100,000 images) and should be studied more using larger
datasets. To assess the role of label co-occurrences, we produced semantic models
using labels as context and showed that their performance is very high. However, we
have also shown that the effect of this co-occurrence on the resulting performance of
visual semantic models is rather limited.
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Future Work

5.1 Visual Attributes

There is a discrepancy between semantic models extracted from text, which use
high level features such as words and documents as features in semantic represen-
tations, and visual models produced by VSEM, which use much lower level visual
words. Silberer et al. (2013) have recently explored the possibilities of using visual
attributes, such as is round and has stripes, in semantic representation. The ad-
vantage of using visual attributes is that they are higher-level features than visual
words and are comparable with the features generated by humans in norming studies.
Just as visual words, visual attributes were initially introduced to help with object
recognition (Farhadi et al., 2009).

Silberer et al. present a large collection of 688,000 images from the ImageNet
dataset (Deng et al., 2009) labelled with the same concepts as those used in McRae
et al. (2005). The concepts are represented in terms of 412 attributes, examples of
which are provided in Table 5.1. The authors show that these automatically derived
visual attributes improve the performance of distributional models on word associa-
tion tasks.

5.2 Learning Representations with Autoencoders

5.2.1 Autoencoders

Autoencoders are a type of neural networks whose input and output layers are
of the same size, but their hidden layers are considerably smaller. It is possible to
use autoencoders for dimensionality reduction by training them to reconstruct their
input and taking the activation vector of their central layer as a low-dimensional code
of the input.

30
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Attribute Category No. of attributes Examples
Colour patterns 25 is red, has stripes

Diet 35 eats nuts, eats grass
Shape size 16 is small, is chubby

Parts 125 has legs, has wheels
Botany, anatomy 25, 78 has seeds, has fur

(In)animate behaviour 55 flies, waddles, pecks
Texture (material) 36 made of metal, is shiny

Structure 3 2 pieces, has pleats

Table 5.1: Visual attributes used in Silberer et al. (2013)

Hinton and Salakhutdinov (2006) successfully used deep autoencoders to produce
representations for handwritten digits and documents. Their novel training procedure
is based on greedy, layer-wise training with Restricted Boltzmann Machines (RBM),
which is completely unsupervised, followed by fine tuning with backpropagation. The
RBM is a two-layer network with stochastic, binary visible and hidden units. Every
visible unit is connected to every hidden unit, but there are no interactions between
units of the same layer. An overview of deep architectures is given in Bengio (2009)
and Bengio et al. (2013); the effects of the unsupervised pre-training phase are exam-
ined in Erhan et al. (2010).

5.2.2 Evaluation

We have implemented the deep autoencoder learning algorithm with layer-wise
RBM pre-training based on methods described in Hinton and Salakhutdinov (2006)
and Hinton (2010). We then trained autoencoders of various forms, used them to
reduce the dimensionality of visual semantic spaces, and evaluated these reduced
spaces on WordSim353 and MEN datasets.

We illustrate the performance of dimensionality reduction using autoencoders on
the following setup. A visual semantic space with 4000 dimensions was used. The
raw co-occurrence counts were transformed using local mutual information and each
concept representation vector was normalized to unit length. We trained a 4000-2000-
1000-500-250-125 autoencoder, using batches of 4 concepts and a total of 100 learning
epochs. We report the correlation scores on the MEN dataset using activations from
individual layers and compare them to scores obtained by a semantic space reduced
using Principal Component Analysis (PCA) in Table 5.2. Although the performance
of models reduced with autoencoders is lower than those reduced wtih PCA, we
believe that we have not yet reached the full potential of the method and consider
these results as preliminary.
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No. of dimensions Autoencoder PCA
2000 0.2599 0.3913
1000 0.1898 0.3913
500 0.1743 0.3916
250 0.1712 0.3919
125 0.1708 0.3918

Table 5.2: Comparison of Spearman correlation scores on MEN achieved by semantic
spaces whose dimensionality was reduced using autoencoders and PCA. All results
significant on the p < 0.005 level.

5.2.3 Supramodal Representations

The availability of concept representations coming from multiple modalities brings
about the question of how to use these different representations. One possibility is to
keep these representations separate and use each for tasks that they are best suited
to. However, having a concept is probably more than just having separate modality-
specific representations. As it has been already discussed in Chapter 2, the evidence
coming from numerous neuroscientific and neuropsychological studies suggests that
our semantic memory consists of both modality-specific and supramodal represen-
tations, and these supramodal representations are created in high level convergence
zones which combine information from multiple modalities (Binder and Desai, 2011;
Meteyard et al., 2012).

Several different approaches to multimodal fusion and therefore to the discovery
of correlations between multiple modalities have already been described in literature.
The simplest approach is a plain concatenation of individual feature vectors, employed
for instance by Johns and Jones (2012). Bruni et al. (2012b) concatenate the two
modalities and subsequently project the representations onto a space of lower dimen-
sionality using Singular Value Decomposition. Feng and Lapata (2010) and Andrews
et al. (2009) both employ topic models and learn topics that combine distributional
and perceptual features. Silberer and Lapata (2012) compare fusion methods based
on topic models, concatenation and canonincal correlation analysis. These systems
have been discussed in more detail in Chapter 2.

Ngiam et al. (2011) proposed a novel method of learning features over both audio
and visual information based on deep networks and applied it in the context of speech
perception. Humans are known to integrate both speech audio and lip movements
when perceiving speech because each modality provides different types of information,
as exemplified for instance by the McGurk effect. However, the correlation between
the two modalities does not manifest itself at the “low-level” of audio waveforms and
pixels, but rather at the “mid-level” of phonemes and visemes1. For this reason,

1Visemes are the visual analogues of phonemes, defined by lip poses and motions employed
when producing a speech sound. However, there is not a one-to-one mapping between phonemes
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multilayer networks could be a very good fit for discovering these correlations, as
they can be used first to create higher-level representations, and second to search for
intercorrelations among these higher-level representations.

We are encouraged by the success of the multimodal fusion method described by
Ngiam et al. (2011) and believe that a similar story of correlation at a higher level can
be told for text and vision. Therefore, we would like to pursue this line of research
in the future. On the other hand, due to the high number of parameters, training
autoencoders and deep networks in general is known to be difficult.

5.3 Predicting Human Brain Activity

Mitchell et al. (2008) presented a computational model capable of predicting func-
tional magnetic resonance imaging (fMRI) neural activation associated with the mean-
ing of nouns. The idea behind the model is rather simple and consists of learning a
mapping between a distributional semantic space extracted from a large corpora and
a neural semantic space of fMRI activations and subsequently using this mapping
to predict neural activity. The availability of neural semantic models has expanded
the range of possible tasks on which automatically extracted semantic models can be
tested.

Devereux et al. (2010) and Murphy et al. (2012) review several different models
and obtain prediction accuracies similar to those published in Mitchell et al. (2008).
However, both studies limit themselves to models extracted from text. We believe
that integrating visual models could be beneficial to the prediction task as all the
nouns in the set are highly imageable (compare Table 5.3) and the subjects were
presented images of the nouns while in the scanner. Therefore, we would like to
investigate different ways of combining both textual and visual models to improve
the prediction.

As all words from the set are included in the ESP dataset, we can use the semantic
models derived in Chapter 4 and test their accuracy in prediction. We reimplemented
the pipeline proposed in Mitchell et al. (2008) in the following way: (1) The map-
ping between the visual and neural semantic space is learned through multiple linear
regression. (2) Pearson correlation is used for matching predicted and actual neural
activations, as this was reported to produce better results (Devereux et al., 2010).
(3) Only the 500 most stable neurons are used for matching. (4) The visual semantic
space is constructed with 500 visual words and then reduced using PCA to 25 dimen-
sions. The results are reported in Table 5.4. Most of the results are not significantly
different from the random baseline, except for subject 7. However, this was just a
preliminary test and we would like to further investigate this area, possibly using
supramodal representations produced by deep neural networks.

and visemes, as several phonemes might correspond to one viseme.
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Category Words
animals bear, cat, cow, dog, horse
body parts arm, eye, foot, hand, leg
buildings apartment, barn, church, house, igloo
building parts arch, chimney, closet, door, window
clothing coat, dress, pants, shirt, skirt
furniture bed, chair, desk, dresser, table
insects ant, bee, beetle, butterfly, fly
kitchen utensils bottle, cup, glass, knife, spoon
man made objects bell, key, refrigerator, telephone, watch
tools chisel, hammer, pliers, saw, screwdriver
vegetables carrot, celery, corn, lettuce, tomato
vehicles airplane, bicycle, car, train, truck

Table 5.3: The 60 nouns using in Mitchell et al. (2008)

Method P1 P2 P3 P4 P5 P6 P7 P8 P9
Mitchell et al. 2008 0.84 0.84 0.77 0.81 0.79 0.67 0.72 0.63 0.68
Visual model 0.53 0.58 0.43 0.43 0.46 0.46 0.64 0.46 0.54

Table 5.4: Prediction accuracy for the the original model and our visual model.
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Conclusion

In this work, we presented a framework for extracting visual information from
images associated with one or more concepts. Our goal was to ground semantic
spaces extracted from text in perception. This has recently become an area of active
research, driven also in part by the evidence from neuroscientific and neuropsycho-
logical studies which support the hypothesis that semantic memory consists of both
modality-specific and supramodal representations. The main motivation for this work
was to simplify the process of acquiring perceptual data, as we consider feature norms
– the commonest method in use – to be only very indirect proxies for sensory-motor
information and mostly inappropriate for use in large scale projects.

The whole process of extracting visual representations of concepts is implemented
in the Visual Semantics toolbox (VSEM), which was presented in this work and
made publicly available. We have evaluated the visual semantic models created by
the toolkit on the MEN and WordSim353 datasets, showing positive correlation with
human relatedness judgements.

The VSEM toolkit and the experiments presented here constitute only a small
step in exploring the possibilities of semantic representation using visual and other
multimodal information. One of the next steps should be the evaluation of visual
semantic models on an image collection in which each image is assigned one label
only. A different research problem is the creation of supramodal representations
from individual modality-specific representations. We have presented some initial
experiments using autoencoders; however, more work needs to be done in the future.
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