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Abstract. There is a growing conviction that the understanding of the
brain function can come through a deeper knowledge of the network
connectivity between different brain areas. Resting state Functional Mag-
netic Resonance Imaging (rs-fMRI) is becoming one of the most impor-
tant imaging modality widely used to understand network functionality.
However, due to the variability at subject scale, mapping common net-
works across individuals is by now a real challenge.

In this work we present a novel approach to group-wise community
detection, i.e. identification of functional coherent sub-graphs across mul-
tiple subjects. This approach is based on a joint diagonalization of two
or more graph Laplacians, aiming at finding a common eigenspace across
individuals, over which clustering in fewer dimension can then be applied.
This allows to identify common sub-networks across different graphs.

We applied our method to rs-fMRI dataset of mouse brain finding
most important sub-networks recently described in literature.

Keywords: Joint Diagonalization, fMRI, Laplacian, Spectral Cluster-
ing, Community Detection.

1 Introduction

Many studies on functional Magnetic Resonance Imaging (fMRI) have demon-
strated temporal correlations in the blood oxygen level-dependent signal of
widely separated brain regions. These temporal correlations among distinct time
series are usually interpreted in terms of functional connectivity, i.e. functional
relationships among the brain areas. This connectivity is usually described by
graphs, where brain regions are nodes and functional correlation between them
are weighted edges [1,2,3]. The advent of this graphical interpretation of brain,
often called connectomics, has changed the way to study brain functions [4]. It is
in fact common practice to exploit graph theory tools to characterize the brain
functions with this graph-based perspective. In particular one of the endeavor in
connectomics is to detect the community structure of the functional networks,
defined in terms of network’s static topology as opposed to a more dynamical
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definition [5]. Even more, the characterization of such functional connectivity
across multiple subjects, in order to detect group-wise sub-networks, is still an
open problem gathering increasing interest in the neuroscience community.

Group-wise characterization of brain dynamics usually passes through the
construction of an average graph over which connectivity indexes are computed
to describe a general brain organization [6]. However, these analyses are affected
by some issues related to the underlying univariate approach, such as the graph
thresholding in the multiple comparison framework, common practice adopted
on complex network in order to differentiate ”possibly false” connections from
“true” connections [7]. Moreover, the average graph could be a limited and not
fully representative statistic.

Although such approach is widely used, the above issues can be addressed
by advanced multivariate methods, characterizing cross-subject brain networks.
Indeed, tools for multi-subject community detection are becoming essential to
map networks across individuals [8], regardless the modality adopted (fMRI,
DTI, EEG and MEG).

In machine learning terms, community detection means graph partitioning or
clustering. However, despite multi-modal investigation of connectomics is gather-
ing interest in the research community, still few approaches have been proposed
based on learning methods and clustering techniques. For example, group fMRI
clustering based on a probabilistic framework was proposed to manage both
group-wise and individual networks [9]. Similarly, Normalized Cut was also ap-
plied on group fMRI clustering [10]. Both method work at the voxel level with
whole-brain coverage but the results are conditioned by the choice of clusters
number or by the cut off threshold, which is substantially different across sub-
jects. A co-training learning method, based on multi-view spectral clustering
was applied to extract networks between subjects and from different modali-
ties (fMRI-DTI) [11]. This approach finds an agreement across multiple graphs
to extract common sub-networks but the results vary according to the number
of iterations and to the number of selected eigenvectors. Moreover, the criteria
adopted to stop learning do not guarantee the convergence of the method.

We are therefore proposing a novel approach to identify brain functional
communities across multiple subjects. Our approach searches for a common
eigenspace for multiple graph Laplacians via joint diagonalization allowing a
further spectral clustering in fewer dimensions [13]. The idea of using graph
Laplacian operator – an approximation of the Laplace-Beltrami operator defined
on the Riemannian manifold – within the joint diagonalization framework is also
addressed in [12], where some theoretical studies and validation of properties on
artificial data have been reported.

We adopted joint diagonalization through generalized Jacobi angles proposed
by Cardoso and Souloumiac [14] since it always converges to a unique solu-
tion. We applied our algorithm on a real dataset finding results in line with the
literature.
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2 Material and Method

2.1 fMRI Mouse Dataset

All experiments were carried out in accordance with Italian regulations govern-
ing animal welfare and protection. MRI experiments were performed on male
C57Bl6/J mice (n=10). The procedure employed for rs-fMRI has been recently
described in [15]. Briefly, mice were anesthetized with isoflurane (5%), intu-
bated, and artificially ventilated. Resting state-fMRI time series were acquired
using controlled halothane anesthesia (0.7%). All experiments were performed
using a 7.0 Tesla MRI scanner using a single-shot EPI sequence with TR/TE
1000/15 ms, matrix 100 × 87, field of view 2.3 × 2 cm2, 16 coronal slices, slice
thickness 0.75 mm an NT=360.

Rs-fMRI time series were pre-processed (registered, motion regressed, band-
pass filtered 0.1- 0.01 Hz and smoothed) as recently described in [15]. ROI masks
corresponding to 50 cortical areas were selected from a mouse brain atlas [15],
and mean time series were computed for each area. Pairwise correlation coeffi-
cients (Fisher’s z-transformed) were finally computed from the rs-fMRI means
for each pair of ROIs generating an adjacency matrix.

2.2 Spectral Clustering

Spectral clustering determines a graph partitioning based on the eigenspace of
the adjacency matrix [13,16]. Specifically, it takes into account the properties of
graph Laplacians to cluster similarity graphs using fewer dimensions.

Let G = (V,E) be an undirected graph with similarity matrix W having non-
negative weights wij ≥ 0. Given this adjacency matrix, graph Laplacian can be
computed in different ways. We used the Normalized Symmetric Laplacian [16]
defined as follow:

L = D− 1
2 (D −W )D− 1

2 (1)

where D = diag (
∑

j wij) is the degree matrix of W .
The Laplacian is a symmetric and positive semi-definite matrix and it can be

decomposed through eigenspace decomposition, so it admits L = UΛU ′, with
U ′U = I, where U = (u1, ....., un) is the eigenspace matrix and Λ is a diagonal
matrix of the corresponding eigenvalues 0 = λ1 ≤ ..... ≤ λn, which are always
positive and the first λ is zero. Due to this general rule and to other mathematical
attributes, Laplacians are often used in combination with spectral methods.

In particular, spectral clustering partitions a graph using a subspace Uk of
the eigenmatrix U , using only the first k eigenvectors associated with the first
k smallest eigenvalues. Actually, the first k smallest eigenvalues hold the most
important information to cluster the nodes of a similarity graph. In the ideal case,
the multiplicity K of the eigenvalues 0 (number of λi = 0) equal the number of
connected components in the graph. As a general rule, however, when K = 1, the
number of clusters can be set using the spectral gap on the eigenvalues ordered in
ascending way. Once k is defined, usually k-means algorithm is used to partition
the graph using the rows of Uk.
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2.3 Multi-subject Functional Community Detection

In our case, we have a set W = {Wi| i = 1...N} of N real n × n adjacency
matrices where each element wij is the mean pairwise correlation coefficient
(Fisher’s z-transformed). A Laplacian matrix Li is therefore built for each Wi.
This means we have a different Laplacian for each different graph, which can
result into different clusterings. Hence, starting from a set of graph Laplacians,
the main idea is to build a common eigenspace across multiple-graphs. This
would allow to perform the clustering on a common space describing the entire
graph population.

If Laplacians have the same size and they commute pairwise (LiLj = LjLi

∀ i, j = 1....N ) they are jointly diagonalizable. Basically, we are looking for an
eigenspace V such that:

V ′LiV = Λi ∀i (2)

where Λi are diagonals made by the eigenvalues for each Laplacian Li.
However, in a real scenario, due to differences between subjects and to the

presence of noise in the data, the Laplacians rarely commute. As a consequence
the Laplacians are not jointly diagonalizable and the common eigenspace can be
only approximated. The problem can therefore be formulated as an optimization
problem solving:

min
V

N∑

i=1

off (V ′LiV ) , V ′V = I (3)

where off(A) =
∑

i�=j |aij |2. In order to find the joint eigenspace, we applied the
generalized Jacobi angles algorithm proposed by Cardoso et al. [14]. The joint
diagonalization can be achieved building a matrix as a product of plane rotation
globally applied to all matrices Li.

The approximate diagonalized Laplacians are therefore obtained by the fol-
lowing equation:

L̃i = V Diag (V ′LiV ) V ′ (4)

where Diag(A) sets to zero off-diagonal elements of corresponding matrix.
Due to the behavior of the algorithm, the eigenspace V is not guaranteed to be

ordered according to the eigenvalues. Indeed, the joint eigenspace has different
eigenvalues for each different Laplacian. Hence, matrix V needs to be sorted
in order to cluster using the k smallest eigenvectors. To obtain an eigenvectors
ranking we introduced a statistical estimation of the eigenvalues cross-subjects,
averaging and then sorting in ascending way the eigenvalues Λi as:

Λ̃ = sort

(
1

N

N∑

i=1

Λi

)

(5)

This allowed us to draw a unique solution for the problem such that the columns
of V were reordered according Λ̃ (from the smallest to the biggest one).
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Algorithm 1. Joint Diagonalization of Graph Laplacians

Data: Similarity matrix for each Subject: Wi

Result: Joint Eigensapce V , Assignments to k clusters

Initialization Li = D
− 1

2
i (Di −Wi) D

− 1
2

i

Joint Diagonalization: min
∑N

i=1 off (V ′LiV ) , V ′V = I
for i = 1 to N do

Λi = V ′LiV

Λ̃ = sort
(

1
N

∑N
i=1 Λi

)

k-means applied to the first k columns of V according to Λ̃

3 Results

We applied the proposed algorithm to our rs-fMRI dataset of 10 healthy mice de-
scribed in section 2.1. To ease the data interpretation, we thresholded functional
correlations to focus our attention only on positive values. As an example, in
Fig. 1 are depicted the graph matrices of 3 subjects. For each functional graph,
the Normalized Symmetric Laplacian has been computed following Eq. 1 and
the joint diagonalization has been applied finding the joint eigenspace V .

In Fig. 2 are depicted the ordered eigenvectors and corresponding eigenvalues.
Notice the spectral gap between the first 4 eigenvalues. This indicates that there
are 4 connected components, i.e. clusters. For this reason we decided to perform
spectral clustering on V using k = 3 and k = 4.

The algorithm produced inter-hemispheric sub-networks related to common
functional community already shown in literature. Fig. 3 shows group-wise com-
mon functional community determined by our approach. Each of these networks
is associated to known brain processes and can be related to well-characterized
functional network modules of the human brain (default-mode, visual hippocam-
pal, sensory-motor, and basal ganglia respectively [17]). We also qualitatively
compared our results on mouse brain with the results obtained using a method
frequently adopted known as Louvain modularity algorithm [18], finding the
same functional communities recently described in [19].

Fig. 1. Overview of functional graphs across subjects. Mean pairwise correlation coef-
ficients are between [0-1] (Blue = 0, Red = 1)
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Fig. 2. Left: Joint Eigenbase V sorted according to smallest joint approximate eigen-
values. Right: Average joint eigenvalues Λ̃ sorted in ascending order

k = 3

k = 4

Fig. 3. Top: Group wise fMRI community observed with k = 3 shows Hippocampal
formation, Parietal and perihippocampal cortices and Corticofrontal and thalamic ar-
eas. Bottom: Group wise fMRI community observed with k = 4 shows Hippocampus,
Parietal somatosensory cortices, Basal ganglia and basolateral cortical areas, and Cor-
ticofrontal and thalamic areas

We also evaluated a similar method proposed by Chen et al. [11] and discussed
in Section 1. Applying Chen algorithm to our data, we actually observed a
good agreement between modified similarity graphs. However, at the end of
the iterative process, we were obtaining a different eigenspace for each different
similarity graph. As a result their method does not entirely answer the group-
wise variability issue. In particular, although the method aims at converging all
graphs to a unique representation, it produces different clustering results for each
subject, making difficult the identification of common sub-network. Conversely
our approach gives back a unique graph representation that well approximates
inter-subject graph similarities.
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4 Discussion

In this paper, we presented a novel approach to explore functional sub-networks
across subjects. The joint diagonalizationmethod, which ismathematically sound,
permits to analyze a large number of subjects simultaneously, mapping all connec-
tomes to a unique subspace able to describe the common group-wise sub-networks
that delineates a population. Experimental results have shown that our approach
is robust since the eigenspace does not significantly change when changing the set
of matrices. Moreover, the only source of variability is related to the number of
clusters we search for, but this number can be suggested by the data itself.

Other approaches better approximating the joint eigenbase [20] could be ex-
plored in the future to minimize the influence of approximation on the eigenval-
ues. This framework can be also extended to multi-modal network analysis (e.g.,
functional and structural data) in order to carry out the relationships between
two or more views.
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